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ABSTRACT 
 

Jellyfish Search (JS) is a recently developed population-based metaheuristic inspired by the 

food-finding behavior of jellyfish in the ocean. The purpose of this paper is to propose a 

quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), for solving structural 

optimization problems. Compared to the classical JS, three main improvements are made in 

the proposed QJS: (1) a quantum-based update rule is adopted to encourage the 

diversification in the search space, (2) a new boundary handling mechanism is used to avoid 

getting trapped in local optima, and (3) modifications of the time control mechanism are 

added to strike a better balance between global and local searches. The proposed QJS is 

applied to solve frequency-constrained large-scale cyclic symmetric dome optimization 

problems. To the best of our knowledge, this is the first time that JS is applied in frequency-

constrained optimization problems. An efficient eigensolution method for free vibration 

analysis of rotationally repetitive structures is employed to perform structural analyses 

required in the optimization process. The efficient eigensolution method leads to a 

considerable saving in computational time as compared to the existing classical 

eigensolution method. Numerical results confirm that the proposed QJS considerably 

outperforms the classical JS and has superior or comparable performance to other state-of-

the-art optimization algorithms. Moreover, it is shown that the present eigensolution method 

significantly reduces the required computational time of the optimization process compared 

to the classical eigensolution method. 
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1. INTRODUCTION 
 

The dynamic characteristics (i.e., natural vibration frequencies and mode shapes) are 

arguably the single most important property of a mechanical system affecting the dynamic 

behavior of the system [1]. For example, in a mechanical system with low-frequency 

vibrations, the dynamic response of the system is mainly a function of its fundamental 

frequency [2]. In such cases, the performance of the structure can be considerably improved 

by manipulating the selected frequency [3]. Structural optimization considering frequency 

constraints provides a systematic design approach for engineering designers to manipulate 

the dynamic characteristics of the structural systems in various ways. For example, in 

designing most space vehicles, to avoid the resonance phenomenon that causes the vibration 

failure, it is necessary to impose constraints on the natural frequency ranges of the designed 

vehicles. Since the early 1980s, some researchers have applied gradient-based optimization 

methods to the optimal design of structures with frequency constraints [4-10]. However, the 

structural optimization problems with frequency constraints are considered challenging 

optimization problems with highly nonlinear, non-convex, and multimodal search spaces 

[11]. Thus, gradient-based optimization methods may not be suitable for this type of 

optimization problem. On the other hand, metaheuristic optimization algorithms could be 

considered appropriate alternatives [12-19].  

Metaheuristic optimization algorithms have been one of the most popular research areas 

in computer science for more than three decades. These approximate optimization 

techniques have been extensively applied to a wide variety of engineering optimization 

problems. This is because metaheuristics: (1) are easy to design and implement as compared 

to other optimization methods, (2) require no gradient information during the search, and 

(3) are not problem-specific [20]. Nature-inspired metaheuristics can be classified into four 

main categories based on the source of inspiration: evolution-based, physics-based, swarm-

based, and human-based [20]. Recently, a novel swarm-based metaheuristic optimizer, 

named Jellyfish Search (JS), has been developed based on the food-finding behavior of 

jellyfish in the ocean [21]. Jellyfish move in the ocean in search of planktonic organisms 

such as fish eggs and larvae, phytoplankton, etc. The movement patterns of jellyfish in the 

ocean can be classified into two major types: (1) their following the ocean current and (2) 

their motions inside the jellyfish swarm. Therefore, two main phases are considered in JS. In 

the early stages of the search process, jellyfish tend to follow ocean currents in search of 

food, while as the search progresses, jellyfish tend to switch to passive and active motions 

inside the swarm. A time control mechanism is considered to govern the switching between 

these movement patterns. The first and second phases are designed to deal with the 

diversification and the intensification of the search, respectively. Our experimental results, 

which will be discussed in Section 6, indicate that the classical JS may easily get trapped in 

local optima due to the lack of diversification in the search space (exploration). Moreover, it 

seems that the trade-off between exploration and exploitation during the search should be 

balanced.  

A large number of structural analyses are usually required to be performed in order to 

achieve optimal or near-optimal designs using metaheuristic algorithms. Thus, it may be 

very time-consuming or even impractical to solve large-scale structural optimization 
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problems using metaheuristic algorithms. In structural optimization problems with 

frequency constraints, the structural analyses involve relatively large generalized 

eigenproblems to find the vibration characteristics of structures [22]. The dimensions of the 

involved matrices in the free-vibration eigenproblem of a structural system are proportional 

to the number of degrees of freedom. This indicates that the required computational time of 

the frequency-constrained optimization problems depends strongly on the size of the 

structure. Therefore, efficient eigensolution methods, which require less computational 

effort to solve a single free-vibration eigenproblem, could be very beneficial for frequency-

constrained structural optimization problems, especially in the case of large-scale structures. 

Since the mid-2000s, the first author and his students have worked extensively on 

developing efficient methods for eigenvalue problems of symmetric, repetitive, and regular 

structures [23-29].  

The main objective of this study is to propose a quantum-based Jellyfish Search 

algorithm, named Quantum JS (QJS), to solve structural optimization problems. Three main 

improvements made in the proposed QJS are (1) a quantum-based update rule to encourage 

the diversification in the search space, (2) a new boundary handling mechanism to avoid 

getting trapped in local optima, and (3) modifications of the time control mechanism to 

strike a better balance between global and local searches. The proposed QJS is applied to 

optimal design of cyclic symmetric dome structures with multiple frequency constraints. The 

required structural analyses are conducted by an efficient eigensolution method proposed by 

Kaveh et al. [30-32] for free vibration analysis of rotationally repetitive structures.  

Section 2 reviews the classical Jellyfish Search (JS) algorithm. In Section 3, after 

pointing out the drawbacks of the classical JS, the proposed quantum-based version of JS 

(QJS) is outlined. In Section 4, the formulation of the truss optimization problem subject to 

frequency constraints is presented. In Section 5, the free vibration analysis of cyclic 

symmetric structures is presented. In Section 6, two large-scale cyclic symmetric dome 

structures are optimized to demonstrate the effectiveness and computational efficiency of the 

proposed method. Finally, the last section draws concluding remarks and provides possible 

extensions of this work.  

 

 

2. JELLYFISH SEARCH (JS) OPTIMIZER1 
 

Jellyfish Search (JS) optimizer is one of the most recent swarm-based metaheuristics 

developed by Chou and Truong [21]. The JS algorithm mimics the food-finding behavior of 

jellyfish in the ocean. Movement patterns of jellyfish in the ocean can be categorized into 

two main types: (1) following ocean currents to form jellyfish swarms, known as jellyfish 

blooms, and (2) motions inside swarms of jellyfish. Fig. 1 shows the movement patterns of 

jellyfish in the ocean. The JS optimizer takes into account both the diversification and the 

intensification of the search. Indeed, at the beginning of the search process, jellyfish follow 

ocean currents in search of food sources. As time goes by, jellyfish tend to switch to passive 

                                                   
1. The source code of the Jellyfish Search algorithm is available at 

https://www.researchgate.net/publication/343499745_Jellyfish_Search_Algorithm_Source_Code  
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and active motions inside the swarms of jellyfish for intensification. A time control 

mechanism is provided to govern the switching between these two types of motion. In the 

following subsection, the mathematical formulation of the classical JS algorithm is 

reviewed. 

 

 
Figure 1. Movement patterns of jellyfish in the ocean 

 

2.1 Mathematical model of the JS optimizer 

The JS algorithm is designed based on the following three idealized rules [21]: 

(1) Jellyfish either follow the ocean current or move inside the jellyfish swarm, and a 

time control mechanism is provided to govern the switching between these two types of 

motion.  

(2) Jellyfish move around in the ocean to find food. Regions with greater availability of 

food sources are more likely to attract more significant numbers of jellyfish.  

(3) Each solution is represented by a location, and its corresponding objective function is 

represented by the quantity of food found at the location.  

 

2.1.1 Ocean current 

Jellyfish can detect ocean currents and feed on smaller planktonic organisms such as fish 

eggs and larvae, phytoplankton, etc. The direction of the ocean current (𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) is 

determined as follows: 

 

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
1

𝑛𝑃𝑜𝑝
∑𝑡𝑟𝑒𝑛𝑑𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =
1

𝑛𝑃𝑜𝑝
∑(𝑋∗ − 𝑒𝑐𝑋𝑖) = 𝑋∗ − 𝑒𝑐

∑𝑋𝑖

𝑛𝑃𝑜𝑝
= 𝑋∗ − 𝑒𝑐𝜇 (1) 

 

where 𝑛𝑃𝑜𝑝 is the number of jellyfish, 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the direction of the ocean current, 𝑋∗ is the 

location of the current best jellyfish of the swarm, 𝜇 is the mean location of all jellyfish, 𝑋𝑖 

is the location of the 𝑖-th jellyfish, and 𝑒𝑐 is a factor governing the attraction.  
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Let 𝑒𝑐𝜇 be denoted by 𝑑𝑓. Then, Eq. (1) can be rewritten as follows: 
 

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋∗ − 𝑑𝑓 (2) 

 

Assuming a normal distribution for the jellyfish’s locations, a distance of ±𝛽𝜎 around the 

mean location has a higher likelihood of containing more jellyfish, where 𝜎 is the standard 

deviation of the normal distribution and 𝛽 (𝛽 > 0) is a coefficient of distribution related to 

the length of 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. If the standard deviation 𝜎 is assumed to be given by 𝜇 × 𝑟𝑎𝑛𝑑𝜎(0, 1), 

the following equation can be derived:  

 

𝑑𝑓 = 𝛽 × 𝜎 × 𝑟𝑎𝑛𝑑𝑓(0, 1) = 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑𝜎(0, 1) × 𝑟𝑎𝑛𝑑𝑓(0, 1) (3) 
 

To simplify the calculations, Eq. (3) is rewritten as follows:  
 

𝑑𝑓 = 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑(0, 1) (4) 
 

By substituting Eq. (4) into Eq. (2), the following equation for 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is obtained: 

 

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋∗ − 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑(0, 1) (5) 

 

The new location of each jellyfish can be obtained as follows: 
 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑(0, 1) × 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (6) 

 

where 𝑋𝑖(𝑡 + 1) and 𝑋𝑖(𝑡) are the new location and the current location of the 𝑖-th jellyfish, 

respectively. After updating each jellyfish’s location via Eq. (6), the better location (i.e., the 

location with greater availability of food sources) is taken as the jellyfish’s current location.  

 

2.1.2 Jellyfish bloom 

Inside a jellyfish bloom, jellyfish exhibit two types of motion: passive motions (type A) and 

active motions (type B), between which the jellyfish switch. At the first stages of the search 

process (i.e., when the jellyfish bloom has just been formed), most jellyfish tend to exhibit 

type A motion, but type B motion is favored as time goes by. In the following two 

subsections, these two types of motion are modeled mathematically.  

 

2.1.2.1 Passive motion (type A) 

Type A motion is associated with the motion of jellyfish around their own current locations, 

with the aim of finding better locations. The new location of each jellyfish is determined as 

follows: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛾 × 𝑟𝑎𝑛𝑑(0, 1) × (𝑈𝑏 − 𝐿𝑏) (7) 

 

where 𝑋𝑖(𝑡 + 1) and 𝑋𝑖(𝑡) are the new location and the current location of the 𝑖-th jellyfish, 

respectively, 𝐿𝑏 and 𝑈𝑏 are the lower and upper bounds of the search space, respectively, 
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and 𝛾 (𝛾 > 0) is a coefficient of motion related to the length of passive motion. After 

updating each jellyfish’s location via Eq. (7), the better location (i.e., the location with 

greater availability of food sources) is taken as the jellyfish’s current location.  

Based on the result of sensitivity analysis carried out by Chou and Truong [21] to 

investigate the effectiveness of parameters 𝛽 and 𝛾, the JS optimizer can find the best 

optimal results when 𝛽 = 3 and 𝛾 = 0.1.  

 

2.1.2.2 Active motion (type B) 

To simulate type B motion of each jellyfish 𝑖, a jellyfish 𝑗 other than the one of interest is 

selected randomly (i.e., 𝑖 ≠ 𝑗). Then, the jellyfish 𝑖 and 𝑗 interact with each other to move 

toward locations with greater availability of food sources. To this end, the jellyfish 𝑖 moves 

directly towards the jellyfish 𝑗 if the quantity of food at the 𝑗-th jellyfish’s location exceeds 

that of the 𝑖-th jellyfish. Otherwise, the jellyfish 𝑖 moves directly away from the jellyfish 𝑗. 
So, each jellyfish moves toward a location with greater availability of food sources. Type B 

motion encourages diversification in the search space. Type B motion can be formulated as: 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑(0, 1) × 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (8) 

 

where 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)     if    𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)

𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)     if    𝑓(𝑋𝑖) ≥ 𝑓(𝑋𝑗)
 (9) 

 

where 𝑓(𝑋𝑖) and 𝑓(𝑋𝑗) are the objective function values of the jellyfish 𝑖 and 𝑗, respectively, 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the vector of the active motion. After updating each jellyfish’s location via 

Eqs. (8) and (9), the better location (i.e., the location with greater availability of food 

sources) is taken as the jellyfish’s current location.  

 

2.1.3 Time control mechanism 

The time control mechanism is provided to regulate the type of motion of jellyfish over time. 

It controls not only type A and type B motions of jellyfish inside the jellyfish bloom but also 

their movements toward ocean currents. To this end, the time control mechanism employs a 

threshold constant 𝐶0 and a time control function 𝑐(𝑡). As can be seen from Eq. (10), the 

time control function is a random number that fluctuates between 0 and 1 but shows an 

overall decreasing trend over time, as shown in Fig. 2. If the value of the time control 

function exceeds 𝐶0, the jellyfish follow the ocean current, whereas if it does not exceed 𝐶0, 

the jellyfish move inside the jellyfish bloom. Chou and Truong recommended a value of 0.5 

for 𝐶0 [21]. The time control function is given by: 

 

𝑐(𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) × (2 × 𝑟𝑎𝑛𝑑(0, 1) − 1)| (10) 
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where 𝑡 is the time index specified as the iteration number, and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the maximum 

iteration number.  

 

 
Fig. 2 Time control function with an overall decreasing trend 

 

To regulate the jellyfish‘s movements inside a jellyfish bloom (type A and type B 

motions), the function (1 − 𝑐(𝑡)) is used as follows: If 𝑟𝑎𝑛𝑑(0, 1) exceeds (1 − 𝑐(𝑡)), type 

A motion is favored. On the other hand, if 𝑟𝑎𝑛𝑑(0, 1) is lower than (1 − 𝑐(𝑡)), type B 

motion is favored. Since (1 − 𝑐(𝑡)) shows an overall increasing trend from 0 to 1 overtime, 

the jellyfish tend to exhibit type A motion within the first stages of the search process, but as 

time passes, type B motion becomes more likely.  

 

2.2 Population initialization 

In the JS optimizer, instead of using a simple random initialization, the Logistic map is used 

to generate the initial population. The Logistic map is formulated as follows: 
 

𝑋𝑖+1 = 𝜂𝑋𝑖(1 − 𝑋𝑖), 0 ≤ 𝑋0 ≤ 1 (11) 
 

where 𝑋𝑖 is the chaotic logistic value for the 𝑖-th jellyfish’s location and 𝑋0 is a randomly 

generated location used for generating the initial population of jellyfish. Obviously, 𝑋𝑖 is a 

number between 0 and 1 under the conditions that 𝑋0 ∈ [0, 1] and 𝑋0 ∉
{0.0,0.25,0.5,0.75,1.0}. The parameter 𝜂 is set to 4 in all experiments.  

 

2.3 Boundary handling mechanism 

If a jellyfish exceeds the boundaries of the search space, it will be located within the 

boundaries through the following equation:   
 

{
𝑋𝑖,𝑑

′ = (𝑋𝑖,𝑑 − 𝑈𝑏,𝑑) + 𝐿𝑏,𝑑     if    𝑋𝑖,𝑑 > 𝑈𝑏,𝑑 

𝑋𝑖,𝑑
′ = (𝑋𝑖,𝑑 − 𝐿𝑏,𝑑) + 𝑈𝑏,𝑑      if    𝑋𝑖,𝑑 < 𝐿𝑏,𝑑

 (12) 
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where 𝑋𝑖,𝑑 is the current location of the 𝑑-th dimension of the 𝑖-th jellyfish, 𝑋𝑖,𝑑
′  is the 

updated location of the 𝑑-th dimension of the 𝑖-th jellyfish after satisfying the boundary 

constraints of the search space, and 𝐿𝑏,𝑑 and 𝑈𝑏,𝑑 are the lower and upper bounds of the 𝑑-th 

dimension of the search space, respectively. Fig. 3 illustrates the boundary handling 

mechanism of Eq. (12). As the figure shows, if the lower bound of the 𝑑-th dimension of the 

search space is violated, the boundary handling mechanism will return its upper bound, and 

vice versa. 

The pseudo-code of the classical JS algorithm is provided in Fig. 4. 

 

 
Figure 3. Boundary handling mechanism 

 

 
Figure 4. Pseudo-code of the classical JS algorithm 
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3. QUANTUM JELLYFISH SEARCH (QJS) ALGORITHM 
 

During the early iterations of the classical JS, the dominant tendency of jellyfish is to follow 

ocean currents. As indicated before, the direction of the ocean current is determined based 

on the difference between the location of the current best jellyfish of the swarm and the 

mean location of all jellyfish of the swarm. Thus, in the early stages of the search process, 

the mean of the jellyfish swarm moves towards the location of the current best jellyfish of 

the swarm. However, it should be noted that in the early iterations, the current best jellyfish 

of the swarm is probably not a high-quality jellyfish. This may lead to undesirable premature 

convergence in the early stages of the search. The experimental results confirm that the 

classical JS suffers from premature convergence, especially when dealing with complex 

optimization problems. Therefore, in order to address this issue and improve the exploration 

capability of the classical JS, based on the work of Kaveh et al. [33], a quantum-based 

update rule is proposed for the exploration phase of the classical JS, as follows: the local 

attractor of each jellyfish of the swarm is determined by Eq. (13): 

 

𝑋𝑖,𝑑
𝑡 (𝑡) = 𝑋𝑖,𝑑(𝑡) × 𝑟𝑎𝑛𝑑1𝑖,𝑑(0, 1) + (1 − 𝑟𝑎𝑛𝑑1𝑖,𝑑(0, 1)) × 𝑋𝑑

𝐵𝑒𝑠𝑡 (13) 

 

where 𝑋𝑖
𝑡 is the local attractor of the 𝑖-th jellyfish of the swarm, 𝑋𝑖 is the current location of 

the 𝑖-th jellyfish of the swarm, 𝑋𝐵𝑒𝑠𝑡 is the best jellyfish found so far, and 𝑟𝑎𝑛𝑑1 is a 

random number uniformly distributed on (0, 1). Eq. (13) indicates that 𝑋𝑖
𝑡, the local attractor 

of the 𝑖-th jellyfish, lies on the line connecting 𝑋𝑖 and 𝑋𝐵𝑒𝑠𝑡 so that it moves following 𝑋𝑖 

and 𝑋𝐵𝑒𝑠𝑡.  

The location of each jellyfish is updated according to the following equation: 

 

𝑋𝑖,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑
𝑡 (𝑡) + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × log(1 𝑟𝑎𝑛𝑑2𝑖,𝑑(0, 1)⁄ ) × 𝛽(𝑡)

× |𝜇𝑑 − 𝑋𝑖,𝑑(𝑡)| 
(14) 

 

where 

 

𝛽(𝑡) = 1 − (1 − 𝑟𝑎𝑛𝑑3(0, 1)) × (
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (15) 

 

where 𝑋𝑖(𝑡 + 1) represents the new location and the current location of the 𝑖-th jellyfish, 

𝑟𝑎𝑛𝑑2 and 𝑟𝑎𝑛𝑑3 are random numbers uniformly distributed on (0, 1), 𝜇 is the mean 

location of all jellyfish of the swarm, and 𝛽(𝑡) controls the convergence of the jellyfish 

toward the best jellyfish found so far.  

In the classical JS, if a solution exceeds the boundary of the search space, the boundary 

handling mechanism of Eq. (12) brings it back to the opposite bound, as seen from Fig. 3. 

Such a boundary handling mechanism may cause difficulties in the convergence process. 

Indeed, it has been recognized that the optimal solutions often lie close to (or even on) the 

boundary of the search space [34]. Thus, during the optimization process, especially in the 

final stages, many solutions, which are probably close to optimal, are likely to move out of 
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the boundaries of the search space. However, the boundary handling mechanism of Eq. (12) 

significantly alters the values of the design variables exceeding their corresponding bounds. 

As a consequence of such a boundary handling mechanism, some potentially good solutions, 

which slightly exceed the boundary of the search space, may be lost during the search 

process. in the proposed QJS, in order to address this issue, we utilize a simple boundary 

handling mechanism, as follows: 

 

{
𝑋𝑖,𝑑

′ = 𝑈𝑏,𝑑     if    𝑋𝑖,𝑑 > 𝑈𝑏,𝑑 

𝑋𝑖,𝑑
′ = 𝐿𝑏,𝑑     if    𝑋𝑖,𝑑 < 𝐿𝑏,𝑑

 (16) 

 

If a solution exceeds the boundary of the search space, the boundary handling mechanism 

of Eq. (16) brings it back to the violated bound.  

Fig. 2 shows a typical trend of the time control function of Eq. (10). As can be seen from 

the figure, in only 16 out of 100 iterations (16%), the time control function value is greater 

than the threshold constant 𝐶0 = 0.5. Hence, in only 16 iterations, mainly from the first ones 

(i.e., before the 42 th iteration), jellyfish follow the ocean current, while, in the other 84 

iterations, jellyfish exhibit passive and active motions inside the swarm. As mentioned 

before, following ocean currents encourages diversification in the search space (i.e., global 

exploration), while exploitation of the search takes place through passive and active motions 

inside jellyfish swarms. As a result, classical JS seems to suffer from the lack of global 

exploration of the search space and focuses mainly on local exploitation of the best solutions 

found. In the proposed QJS, in order to address this issue and achieve a better balance 

between diversification and intensification of the search process, a simple linear time control 

mechanism is proposed as follows: 

 

𝑐(𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)| (17) 

 

Such a deterministic definition of time control mechanism leads to a simple trade-off 

between intensification and diversification during the search. The first half of iterations (i.e., 

when 𝑐(𝑡) ≥ 0.5) are dedicated to the global exploration of the search space, while the 

second half (i.e., when 𝑐(𝑡) < 0.5) deals with local exploitation of the best solutions found.  

In the classical JS, passive (type A) motion is associated with the motion of jellyfish 

around their current locations, with the aim to find better locations. Each jellyfish, whether 

good or bad, exploits its own neighborhood, which may cause difficulties such as slow 

convergence rate and easily getting trapped in local optima. In the proposed QJS, in order to 
enhance the exploitation capability of the classical JS and speed up its convergence rate without 

loss of diversity, passive (type A) motion is associated with the motion of jellyfish around the 

location of the best jellyfish found so far, and is defined as follows: 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝐵𝑒𝑠𝑡 + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × 𝑟𝑎𝑛𝑑(0, 1) × (𝑈𝑏 − 𝐿𝑏) (18) 

 

where 𝑋𝐵𝑒𝑠𝑡 is the location of the best jellyfish found so far and 𝑟𝑎𝑛𝑑𝑖([1,2]) returns a 

pseudorandom scalar integer between 1 and 2. The term 𝑟𝑎𝑛𝑑𝑖([1,2]) allows to explore the 
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whole neighborhood of the best jellyfish found so far.  

Fig. 5 shows the pseudo-code of the Quantum JS (QJS) algorithm. 

 

 
Figure 5. Pseudo-code of the QJS algorithm 

 

 

4. MATHEMATICAL FORMULATION OF THE OPTIMIZATION 

PROBLEM   
 

In a truss sizing optimization problem with frequency constraints, the aim is to minimize the 

total weight of the structure while satisfying some constraints on natural vibration 
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frequencies. The cross-sectional areas of structural members are considered as continuous 

design variables. The layout of the structure is pre-defined and kept unchanged during the 

optimization process. The mathematical formulation of the optimization problem is as 

follows [1]: 

 

Find {𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑛𝐷𝑉] (19) 

 

to minimize 𝑃({𝑋}) = 𝑓({𝑋}) × 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) (20) 

 

subject to: {

𝜔𝑗 ≥ 𝜔𝑗
∗        for some natural vibration frequencies 𝑗

𝜔𝑘 ≤ 𝜔𝑘
∗        for some natural vibration frequencies 𝑘

𝐿𝑏,𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑏,𝑖                                            𝑖 = 1,2, … , 𝑛𝐷𝑉
 (21) 

 

where {𝑋} denotes the vector of design variables, including sizing design variables, 𝑛𝐷𝑉 is 

the number of design variables, which is selected considering the member-grouping 

configuration, 𝑥𝑖 is the cross-sectional area of the structural members of the 𝑖-th member 

group, 𝑓({𝑋}) is the objective function of the optimization problem to be minimized, which 

represents the total weight of the structure in a weight minimization problem, 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) 

is the penalty function which is used to handle the problem constraints, and 𝑃({𝑋}) is the 

penalized objective function. 𝐿𝑏,𝑖 and 𝑈𝑏,𝑖 are the lower and upper bounds of the cross-

sectional area of the structural members of the 𝑖-th member group, respectively, 𝜔𝑗 and 𝜔𝑘 

are the 𝑗-th and the 𝑘-th natural vibration frequencies of the structure, respectively, 𝜔𝑗
∗ is the 

lower bound of the 𝑗-th natural vibration frequency of the structure, and 𝜔𝑘
∗  is the upper 

bound of the 𝑘-th natural vibration frequency of the structure. The objective function is 

considered to be the total weight of the structure and can be defined as follows: 

 

𝑓({𝑋}) = 𝑊({𝑋}) = ∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (22) 

 

where 𝜌𝑖, 𝐴𝑖, and 𝐿𝑖 are the material density, cross-sectional area, and length of the 𝑖-the 

structural member, respectively, 𝑛𝐸 is the number of structural members of the structure, 

and 𝑊({𝑋}) is the total weight of the structure.  

Various strategies have been suggested to handle constraints in optimization problems, 

one of the most popular of which is penalizing strategies. The main idea of penalizing 

strategies is to transform a constrained optimization problem into an unconstrained one by 

penalizing the infeasible solution and extending an unconstrained objective function [35]. 

Here, a dynamic penalty function is used to tackle the violated constraints [36]: 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) = (1 + ɛ1 × 𝜐)ɛ2 , 𝜐 = ∑𝜐𝑖

𝑛𝐶

𝑖=1

 (23) 
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where 𝑛𝐶 is the number of constraints of the problem, ɛ1 and ɛ2 are the penalty parameters 

that affect the severity of violated constraints, and 𝜐 denotes the sum of the constraint 

violations. The value of 𝜐𝑖 is set to zero if the 𝑖-th constraint is satisfied, while in the case of 

a violated constraint, it is selected considering the severity of the violation. The 

mathematical expression of 𝜐𝑖 is as follows:  

 

𝜐𝑖 = {
|1 −

𝜔𝑖

𝜔𝑖
∗|      if the 𝑖 − th frequency constraint is violated

0                                                                                    otherwise

 (24) 

 

Dynamic penalty functions take into account the progress of the optimization process so 

that penalty is imposed at a dynamic or increasing rate [35]. This means that a low degree of 

penalty is imposed at the beginning of the search process. However, as the search process 

progresses, the degree of the penalty also gradually increases [37]. Such a dynamic strategy 

encourages the diversification in the search space (i.e., more exploration) in the early 

iterations of the optimization process, but more emphasis on the intensification of the best 

solutions found (i.e., more exploitation) in the last iterations [22].  

The parameters ɛ1 and ɛ2 control how much an infeasible solution is penalized. The 

severity of penalizing is very sensitive to these parameters. Hence, setting the parameters ɛ1 

and ɛ2 is a challenging task and requires many preliminary trials [38]. If they are chosen too 

small, feasible regions of search space may not be explored effectively, and even the 

algorithm may never converge to a feasible solution. On the other hand, if they are too large, 

premature convergence may occur [39]. In this study, a constant value for the parameter ɛ1 

is chosen, whereas the parameter ɛ2 increases monotonically with the number of iterations. 

 

 

5. FREE VIBRATION ANALYSIS OF CYCLIC SYMMETRIC STRUCTURES 
 

Free vibration means the motion of a structure without any externally applied vibration 

forcing [40]. Vibration characteristics (i.e., natural vibration frequencies and mode shapes) 

play an essential role in the dynamic analysis of structures [41]. Determining the vibration 

characteristics of an undamped structure requires the solution of the following algebraic 

equation, known as the matrix eigenvalue problem [42]: 

 

𝐾𝜙𝑖 = 𝛾𝑖𝑀𝜙𝑖 , 𝑖 = 1,2,⋯ ,𝑁 (25) 

 

where 𝐾 is the elastic stiffness matrix of the structure (hereafter called stiffness matrix of the 

structure), 𝑀 is the mass matrix of the structure, which is a linear combination of structural 

and non-structural mass matrices, 𝜙𝑖 is the 𝑖-th natural mode shape of vibration of the 

structure corresponding to the 𝑖-th eigenvalue (𝛾𝑖), and 𝑁 is the number of degrees of 

freedom of the structure. The 𝑖-th natural frequency of vibration (𝜔𝑖) and its corresponding 

natural period of vibration (𝑇𝑖) are related to the 𝑖-th eigenvalue as follows:  
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𝛾𝑖 = 𝜔𝑖
2 = (2𝜋 𝑇𝑖⁄ )2, 𝑖 = 1,2,⋯ , 𝑁 (26) 

 

There are many different methods to solve eigenvalue problems [43]. However, it should 

be noted that there is no single method that can always give a very efficient solution to every 

eigenvalue problem. Classical eigensolution methods do not take advantage of the 

potentially beneficial properties of the matrices involved in eigenvalue problems (i.e., the 

matrices 𝐾 and 𝑀) and thus deal with large-dimension matrices. As a result, the required 

computational effort of these methods depends strongly on the size of the structure (i.e., the 

number of degrees of freedom) [22]. Hence, it is time-consuming and inefficient to solve the 

generalized eigenvalue problem given by Eq. (25) with classical eigensolution methods, 

especially for large-scale structures. However, in the case of general structures, it is 

inevitable to use classical eigensolution methods. On the other hand, the design optimization 

process of a structure with frequency constraints usually requires many free vibration 

analyses to be carried out. As mentioned before, the mathematical formulation of free 

vibration analysis of structures leads to the generalized eigenvalue problem given by Eq. 

(25). The most time-consuming part of frequency constraint optimization problems is 

usually the solution of eigenvalue problems [44]. As a result, design optimization of large-

scale structures with frequency constraints could not be performed using the classical 

eigensolution methods in a reasonable time. Consequently, alternative efficient 

eigensolution methods, which take the maximum advantage of the properties of the matrices 

involved in eigenvalue problems in order to decrease the required computational time and 

memory, should be considered. The global stiffness matrix and mass matrix of a cyclic 

symmetric structure in the cylindrical coordinate system exhibit a unique pattern known as 

block circulant [45]. Circulant matrices can be expressed as the sum of Kronecker products 

in which the first components satisfy the commutative property of multiplication [30]. This 

property facilitates the block diagonalization of circulant matrices. Therefore, using this 

property of block circulant matrices, the initial generalized eigenvalue problem, derived 

from the free vibration analysis, is decomposed into highly smaller sub-eigenproblems [32]. 

This approach leads to not only the high accuracy of the free vibration analysis results but 

also a significant decrease in computational time as compared to classical eigenvalue 

solutions [45]. The details on the efficient eigensolution method can be found in [30-32].  

 

 

6. CASE STUDIES 
 

In this study, two cyclic symmetric dome optimization examples are considered to 

demonstrate the validity, efficiency, and accuracy of the present method for free vibration 

analysis of rotationally repetitive structures and the proposed QJS for solving sizing 

optimization of dome structures with multiple frequency constraints. These domes are taken 

from Kaveh et al. [45]. The first example is the sizing optimization of a 600-bar single-layer 

dome structure with 25 design variables. The second example is the sizing optimization of a 

1410-bar double-layer dome structure with 47 design variables. Table 1 lists the material 

properties, cross-sectional area bounds, and frequency constraints of all examples. The 

results of QJS are compared with those of JS and other optimization methods reported in the 
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literature. Moreover, the present efficient eigensolution method is compared in terms of 

accuracy and computational time with the existing classical eigensolution method. The 

optimization results are reported in terms of the best weight, average weight, worst weight, 

and standard deviation. The maximum number of objective function evaluations is taken as 

the termination criterion of the optimization process. In both examples, the population size 

𝑛𝑃𝑜𝑝 is chosen to be 20 for both the JS and the QJS, and the maximum number of iterations 

(𝑀𝑎𝑥𝐼𝑡𝑒𝑟) is set to 1000. To consider the stochastic nature of the optimization process, ten 

independent runs are performed for each problem, and the optimal design results of the best 

run are reported. The finite element models and the optimization codes are implemented in 

the Matlab environment. It is noted that the optimizations are performed on a PC with 

Windows 10, Intel(R) Core (TM) i5-7200U CPU 2.50 GHz 2.71 GHz, and 8.00 GB RAM. 
 

Table 1: Material properties, cross-sectional area bounds, and frequency constraints of 

investigated examples 

Problem 
Elasticity modulus 

𝐸 (N/m2) 

Material density 

𝜌 (kg/m3) 

Cross-sectional area 

bounds (m2) 

Frequency 

constraints (Hz) 

600-bar dome-like truss 2×1011 7850 0.0001 ≤ 𝐴𝑖 ≤ 0.01 𝜔1 ≥ 5, 𝜔3 ≥ 7 

1410-bar dome-like truss 2×1011 7850 0.0001 ≤ 𝐴𝑖 ≤ 0.01 𝜔1 ≥ 7, 𝜔3 ≥ 9 

 

6.1 The 600-bar single-layer dome structure 

The first design problem solved in this study is the 600-bar single-layer dome shown in Figs. 

6 and 7. The entire structure is comprised of 216 nodes and 600 elements and could be 

generated by the cyclic repetition of a sub-structure with 9 nodes and 25 elements around the 

cyclic symmetry axis of the structure. Fig. 8 shows the details of a typical sub-structure, 

including nodal numbering. The angle of cyclic symmetry is equal to 15 degrees, which 

results in a total of 24 similar sub-structures. Table 2 summarizes the nodal coordinates of 

the first sub-structure in the Cartesian coordinate system. The connectivity information of 

the first sub-structure is also given in Table 3. The cross-sectional area of each element of 

the sub-structure is considered as an independent sizing design variable. However, the layout 

of the structure is kept unchanged during the optimization process. Therefore, this is a sizing 

optimization problem with 25 design variables. A non-structural mass of 100 kg is attached 

at all free nodes of the dome. As Table 1 shows, the frequency constraints are imposed on 

the first and third natural vibration frequencies. This problem was previously studied by 

different researchers using different metaheuristic optimization algorithms [15, 46-50]. 

Table 3 provides a comparison of the optimization results obtained by JS, QJS, and other 

referenced metaheuristics [15, 46-50]. It can be seen that the best and average optimized 

weights obtained by QJS over the ten independent runs are lighter than those corresponding 

to the best designs of all other considered optimization methods. Furthermore, it is clear that 

QJS significantly outperforms the classical JS in terms of optimized weight and standard 

deviation on optimized weight. QJS achieved a feasible optimized design corresponding to a 

weight of 6065.503 kg, 1.65% lighter than the optimum design found by JS (i.e., 6166.965 

kg). Moreover, QJS found an average optimized weight of 6077.634 kg over ten 

independent runs, 19.50% lighter than the average weight of JS (i.e., 7549.676 kg). QJS 
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required only 8820 analyses to find a feasible design corresponding to a structural weight of 

6079.643 kg, which is lighter than the best weights found by all other referenced 

optimization methods [15, 46-50]. As can be seen from the table, there is a significant 

difference between the average weight and best weight values of the classical JS. This is 

because the classical JS easily gets trapped in local optima in some cases. In the present 

example, in 9 out of 10 optimization runs, the classical JS has been trapped in local optima 

far from the global optimum. Fig. 9 compares the average-weight convergence histories of 

the classical JS and QJS. As can be observed from the figure, the classical JS shows a very 

fast convergence rate in the early iterations of the search process, which may result in a 

premature loss of diversity in the population, and a premature convergence could occur. On 

the other hand, because of a better diversification of the search, especially in the early 

iterations, QJS has a high probability of escaping from local optima. Table 4 provides the 

first five natural frequencies of the optimized designs obtained by JS, QJS, and other 

referenced metaheuristics [15, 46-50]. It can be seen that the optimized designs of JS and 

QJS satisfy all frequency constraints. 

Table 8 provides a comparison of computational efficiency between the classical and the 

proposed efficient eigensolution method. As can be seen from the table, through the efficient 

eigensolution method, instead of solving a direct eigenvalue problem of order 576, we need 

to find the eigenvalues for 24 matrices of order 24 (8 free nodes of sub-structure). This leads 

to a considerable saving in computational time. In fact, in the case of the 600-bar single-

layer dome, the average computational time of the classical eigensolution method for free 

vibration analysis is calculated 0.0363 sec, which is more than six times the computational 

time required by the efficient eigensolution method (0.0054 sec). Furthermore, we have 

estimated that 7253.9406 sec (about 121 min) would be required to perform ten independent 

runs of the proposed QJS using the classical eigensolution method. However, using the 

efficient eigensolution method, the same algorithm requires only 1075.9423 sec (about 18 

min) to perform these runs.  

 

 
Figure 6. Schematic of the 600-bar single-layer dome 
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Figure 7. The 600-bar single-layer dome (top view) 

 

 
Figure 8. Details of a sub-structure of the 600-bar single-layer dome 

 

Table 2: Nodal coordinates (m) of the sub-structure of the 600-bar single-layer dome 

Node number Coordinates (𝑥, 𝑦, 𝑧) 

1 (1.0, 0.0, 7.0) 

2 (1.0, 0.0, 7.5) 

3 (3.0, 0.0, 7.25) 

4 (5.0, 0.0, 6.75) 

5 (7.0, 0.0, 6.0) 

6 (9.0, 0.0, 5.0) 

7 (11.0, 0.0, 3.5) 

8 (13.0, 0.0, 1.5) 

9 (14.0, 0.0, 0.0) 
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Table 3: Comparison of optimal results of the 600-bar dome obtained by different algorithms 

(cm2) 

Element number 

(element nodes) 

CBO 

[15] 

DPSO 

[46]  

VPS 

[47]   

ECBO-

Cascade 

[48] 

MDVC-

UPVS 

[49] 

PFJA 

[50] 

This study 

JS QJS 

1 (1-2) 1.2404 1.365 1.3030 1.0299 1.2575 1.1867 1.3667 1.2623 

2 (1-3) 1.3797 1.391 1.3998 1.3664 1.3466 1.2967 1.3336 1.4105 

3 (1-10) 5.2597 5.686 5.1072 5.1095 4.9738 4.5771 12.2413 5.1157 

4 (1-11) 1.2658 1.511 1.3882 1.3011 1.4025 1.3356 5.1191 1.3939 

5 (2-3) 17.2255 17.711 16.9217 17.0572 17.3802 18.3157 16.4818 17.5568 

6 (2-11) 38.2991 36.266 38.1432 34.0764 37.9742 38.5097 33.5000 34.5863 

7 (3-4) 12.2234 13.263 11.8319 13.0985 13.0306 13.5917 13.1109 13.0500 

8 (3-11) 15.4712 16.919 16.6149 15.5882 15.9209 16.8824 15.8066 14.9897 

9 (3-12) 11.1577 13.333 11.3403 12.6889 11.9419 13.8766 10.8633 11.3361 

10 (4-5) 9.4636 9.534 9.3865 10.3314 9.1643 9.5286 10.5474 9.1993 

11 (4-12) 8.8250 9.884 8.7692 8.5313 8.4332 9.4218 8.0920 8.3409 

12 (4-13) 9.1021 9.547 9.6682 9.8308 9.2375 9.7643 9.7763 9.2362 

13 (5-6) 6.8417 7.866 6.9826 7.0101 7.2213 7.2431 6.8615 7.5831 

14 (5-13) 5.2882 5.529 5.4445 5.2917 5.2142 5.3913 5.3937 5.3152 

15 (5-14) 6.7702 7.007 6.3247 6.2750 6.7961 6.7468 6.4819 6.5682 

16 (6-7) 5.1402 5.462 5.1349 5.4305 5.2078 5.1493 4.8695 4.8128 

17 (6-14) 5.1827 3.853 3.3991 3.6414 3.4586 3.8342 3.2424 3.5015 

18 (6-15) 7.4781 7.432 7.7911 7.2827 7.6407 8.0665 7.4539 7.6773 

19 (7-8) 4.5646 4.261 4.4147 4.4912 4.3690 4.2800 4.5403 4.2587 

20 (7-15) 1.8617 2.253 2.2755 1.9275 2.1237 2.2509 2.3723 2.1748 

21 (7-16) 4.8797 4.337 4.9974 4.6958 4.5774 4.5372 5.0763 4.7066 

22 (8-9) 3.5065 4.028 4.0145 3.3595 3.4564 3.5615 3.9347 3.8047 

23 (8-16) 2.4546 1.954 1.8388 1.7067 1.7920 1.7744 1.9255 1.9187 

24 (8-17) 4.9128 4.709 4.7965 4.8372 4.8264 4.6445 4.5980 4.7502 

25 (9-17) 1.2324 1.410 1.5551 2.0253 1.7601 1.6141 1.5421 1.5567 

Best weight (kg) 6182.01 6344.55 6133.02 6140.51 6115.10 6333.251 6166.965 6065.503 

        [6079.643]2 

Average weight (kg) 6226.37 6674.71 6142.03 6175.33 6119.95 6380.31 7549.676 6077.634 

Worst weight (kg) - - - - - - 7798.256 6094.435 

Standard deviation (kg) 60.12 473.21 12.54 34.08 16.23 47.396 463.445 9.356 

Maximum Number of 

FE analyses 
20000 9000 30000 20000 18000 25000 20000 20000 

 
Table 4: Natural frequencies (Hz) of the optimal designs for the 600-bar dome 

Frequency 

number 

CBO 

[15] 

DPSO 

[46]  

VPS 

[47]   

ECBO-

Cascade [48] 

MDVC-

UPVS [49] 

PFJA 

[50] 

This study 

JS QJS 

1 5.000 5.000 5.0000 5.001 5.000 5.0011 5.0097 5.0008 

2 5.000 5.000 5.0003 5.001 5.000 5.0011 5.0097 5.0008 

3 7.000 7.000 7.0000 7.001 7.000 7.0000 7.0017 7.0001 

4 7.000 7.000 7.0001 7.001 7.000 7.0000 7.0017 7.0001 

5 7.001 7.000 7.0002 7.002 7.000 7.0000 7.0017 7.0003 

                                                   
2. QJS found a feasible optimum design corresponding to a structural weight of 6079.643 kg after 8820 

analyses. 
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Figure 9. Average weight convergence histories for the 600-bar single-layer dome 

 

6.2 The 1410-bar double-layer dome structure 

The second design example considered in this study is the size optimization of the 1410-bar 

double-layer dome structure shown in Figs. 10 and 11. The entire structure is comprised of a 

total of 390 nodes and 1410 elements and could be generated by the cyclic repetition of the 

sub-structures shown in Fig. 12 around the cyclic symmetry axis of the structure. As can be 

seen from the figure, each sub-structure has 13 nodes and 47 elements. The angle of cyclic 

symmetry is equal to 12 degrees, which results in a total of 30 similar sub-structures. The 

Cartesian coordinates of the nodes of the first sub-structure are listed in Table 5. The 

connectivity information of the first sub-structure is given in Table 6. A non-structural mass 

of 100 kg is attached to all free nodes of the dome. The cross-sectional area of each element 

of the sub-structure represents a continuous sizing design variable of the problem. Therefore, 

this is a sizing optimization problem with 47 design variables. As Table 1 shows, the 

frequency constraints are imposed on the first and third natural vibration frequencies of the 

dome. This structure was previously optimized with different metaheuristic optimization 

algorithms [22, 46, 48-52]. 

Table 6 compares the optimization results obtained by JS, QJS, and other referenced 

optimization methods [22, 46, 48-52]. It can be seen that the best and average optimized 

weights obtained by QJS over the ten independent runs are lighter than those corresponding 

to the best designs of all other considered optimization methods. Furthermore, it is clear that 

QJS significantly outperforms the classical JS in terms of optimized weight and standard 

deviation on optimized weight. QJS achieved a feasible optimized design corresponding to a 

weight of 10278.571 kg, 3.61% lighter than the optimum design found by JS (i.e., 

10663.092 kg). Moreover, QJS found an average optimized weight of 10369.689 kg over ten 

independent runs, 8.14% lighter than the average weight of JS (i.e., 11288.002 kg). QJS 
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required only 12520 analyses to find a feasible design corresponding to a structural weight 

of 10319.228 kg, which is lighter than the best weights found by all other referenced 

optimization methods [22, 46, 48-52]. As can be seen from the table, there is a significant 

difference between the average weight and best weight values of the classical JS. This is 

because the classical JS easily gets trapped in local optima in some cases. Fig. 13 compares 

the average-weight convergence histories of the classical JS and QJS. As can be observed 

from the figure, the classical JS shows a very fast convergence rate in the early iterations of 

the search process, which may result in a premature loss of diversity in the population, and a 

premature convergence could occur. On the other hand, because of a better diversification of 

the search, especially in the early iterations, QJS has a high probability of escaping from 

local optima. Table 7 provides the first five natural frequencies of the optimized designs 

obtained by JS, QJS, and other referenced metaheuristics [22, 46, 48-52]. It can be seen that 

the optimized designs of JS and QJS satisfy all frequency constraints. 

Table 8 provides a comparison of computational efficiency between the classical and the 

proposed efficient eigensolution method. As can be seen from the table, through the 

presented eigensolution method, instead of solving a direct eigenvalue problem of order 

1080, we need to find the eigenvalues for 30 matrices of order 36 (12 free nodes of sub-

structure). This leads to a considerable saving in computational time. In fact, in the case of 

the 1410-bar double-layer dome, the average computational time of the classical 

eigensolution method for free vibration analysis is calculated 0.1797 sec, which is more than 

12 times the computational time required by the efficient eigensolution method (0.0140 sec). 

Furthermore, we have estimated that 35941.3224 sec (about 599 min) would be required to 

perform ten independent runs of the proposed QJS using the classical eigensolution method. 

However, using the efficient eigensolution method, the same algorithm requires only 

2806.7635 sec (about 47 min) to perform these runs. 

 

 
Figure 10. Schematic of the 1410-bar double-layer dome 
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Figure 11. The 1410-bar double-layer dome (top view) 

 

 
Fig. 12 Details of a sub-structure of the 1410-bar double-layer dome 

 
Table 5: Coordinates (m) of the nodes of the 1410-bar double-layer dome 

Node number Coordinates (𝑥, 𝑦, 𝑧) Node number Coordinates (𝑥, 𝑦, 𝑧) 

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0) 

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75) 

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25) 

4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75) 

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0) 

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, -0.5) 

7 (13.0, 0.0, 0.0)   
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Table 6: Comparison of optimal results of the 1410-bar dome obtained by different algorithms 

(cm2) 

Element 

number 

(element 

nodes) 

CPA 

[22] 

DPSO 

[46] 

ECBO-

Cascade 

[48] 

MDVC-

UPVS 

[49] 

PFJA [50] 
CRPSO 

[51] 
MJA [52] 

This study 

JS QJS 

1 (1-2) 7.416 7.209 7.9969 5.8499 6.1902 2.5000 7.3465 5.7165 7.1979 

2 (1-8) 4.768 5.006 6.1723 4.5115 4.4036 6.0000 4.2998 4.9880 5.5897 

3 (1-14) 38.993 38.446 35.5011 19.4823 31.2253 18.0000 31.8485 27.1197 34.8424 

4 (2-3) 8.966 9.438 10.2510 8.8480 8.4715 9.5000 8.8767 7.8185 8.9950 

5 (2-8) 4.511 4.313 5.3727 5.0084 4.8590 6.0000 4.9778 4.8252 5.2544 

6 (2-9) 1.544 1.494 1.3488 1.3568 1.5759 1.0000 1.7469 4.9369 1.1174 

7 (2-15) 8.371 8.455 11.4427 17.4331 12.9451 29.5000 11.6099 16.5200 12.2753 

8 (3-4) 9.276 9.488 9.7157 9.1098 9.3263 8.0000 9.2972 7.8311 8.8234 

9 (3-9) 3.583 3.480 1.3005 2.8712 3.2716 2.0000 3.3406 2.5401 2.6118 

10 (3-10) 3.476 3.495 2.5046 3.5473 3.2878 1.5000 3.2006 3.8229 2.5921 

11 (3-16) 15.531 16.037 10.7849 12.3768 12.6719 1.0000 12.1131 11.0850 9.3809 

12 (4-5) 10.285 9.796 10.1954 10.1099 10.0979 7.5000 9.7121 11.0365 9.1070 

13 (4-10) 2.497 2.413 2.2300 2.5797 2.5803 1.0000 2.5294 2.2098 2.2585 

14 (4-11) 5.397 5.681 5.1186 5.8381 5.3769 6.0000 5.8102 6.9714 5.6850 

15 (4-17) 16.503 15.806 14.0053 13.6402 16.0581 14.5000 16.5566 16.0879 14.6390 

16 (5-6) 8.193 8.078 8.9713 9.9096 8.6789 9.0000 8.3162 8.3039 9.3749 

17 (5-11) 3.829 3.931 4.0756 3.6543 3.3199 1.0000 3.2415 4.3745 3.4546 

18 (5-12) 6.151 6.099 5.9211 6.1529 6.4966 8.0000 6.4539 5.7235 6.7717 

19 (5-18) 10.465 10.771 10.6915 11.2448 10.8804 19.5000 10.7040 6.1606 11.9384 

20 (6-7) 13.925 13.775 10.6220 13.1071 14.0056 16.5000 13.8031 12.1901 13.1518 

21 (6-12) 4.415 4.231 4.5064 5.2361 5.0843 5.0000 5.0161 4.4068 5.4571 

22 (6-13) 6.863 6.995 8.4086 7.0691 6.9952 9.0000 7.6509 6.5886 7.0355 

23 (6-19) 1.769 1.837 5.8405 2.0015 1.0270 1.0000 1.0762 4.6185 1.0564 

24 (7-13) 4.339 4.397 5.0342 4.7178 4.3788 5.0000 4.3282 4.3287 4.6344 

25 (8-9) 2.115 2.115 3.8932 2.6101 2.1951 6.5000 2.2062 2.2753 2.6707 

26 (8-14) 4.951 4.923 6.1647 4.5434 4.2562 5.5000 4.8730 4.4873 5.0560 

27 (8-15) 4.147 4.047 6.8990 4.6174 4.6605 7.0000 4.8202 4.8310 6.3306 

28 (8-21) 6.044 5.906 11.6387 9.6758 8.8694 15.5000 9.0166 8.5942 11.1431 

29 (9-10) 3.222 3.392 3.8343 3.6296 3.2333 4.5000 3.4591 4.0457 3.9277 

30 (9-15) 1.970 1.902 1.4772 1.4891 1.7611 2.5000 1.9876 3.1836 1.2864 

31 (9-16) 4.290 4.381 1.3075 3.4020 3.2831 2.5000 3.4317 2.0009 2.2858 

32 (9-22) 8.020 8.442 4.4876 6.2153 7.1936 1.0000 7.7208 6.4017 5.2431 

33 (10-11) 4.857 5.011 6.0196 5.9308 4.9840 6.0000 4.8261 7.1641 4.9566 

34 (10-16) 3.689 3.577 2.6729 3.2334 3.6672 1.0000 2.9942 3.8786 2.5732 

35 (10-17) 2.831 2.805 1.6342 2.7173 2.4062 1.0000 2.5166 2.9547 2.3854 

36 (10-23) 1.985 2.024 1.8410 1.3932 2.1576 1.0000 1.8493 4.0056 1.4009 

37 (11-12) 6.373 6.709 6.8841 6.5660 7.1043 10.0000 7.1007 9.2614 7.5222 

38 (11-17) 4.865 5.054 4.1393 4.8170 5.2070 5.5000 5.1141 4.0014 4.9231 

39 (11-18) 3.412 3.259 3.3264 3.2626 3.6853 3.5000 4.0067 2.6725 3.8285 

40 (11-24) 1.027 1.063 1.0000 1.0165 1.0007 1.0000 1.0270 1.0172 1.0086 

41 (12-13) 6.218 5.934 6.9373 7.2529 6.6302 7.5000 6.3676 7.8945 6.6448 

42 (12-18) 7.342 7.057 4.4568 5.9226 6.6773 8.5000 4.3443 5.6654 6.6450 

43 (12-19) 5.458 5.745 4.6758 5.3115 5.2167 7.5000 5.2791 3.8422 5.4045 

44 (12-25) 1.140 1.185 1.0084 1.0010 1.0016 1.0000 1.0086 1.0078 1.0024 

45 (13-19) 7.401 7.274 7.5103 7.7499 8.1289 7.5000 7.2667 11.0757 7.9904 
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46 (13-20) 4.578 4.798 5.2449 4.7836 4.5151 6.5000 4.3730 4.5371 4.0605 

47 (13-26) 1.561 1.515 1.0550 1.0035 1.0010 1.0000 1.0761 1.1070 1.0022 

Best weight 

(kg) 
10435.47 10453.84 10504.20 10345.12 10326.296 11044.617 10334.852 10663.092 10278.571 

         [10319.228]3 

Average 

weight (kg) 
10658.48 11100.57 10590.67 10393.83 10399.828 13017.900 10420.668 11288.002 10369.689 

Worst 

weight (kg) 
- - - - - - - 11742.704 10481.253 

Standard 

deviation 

(kg) 

129.90 334.20 52.51 39.15 75.441 1454.813 79.966 291.065 53.786 

Number of 

FE analyses 
80000 50000 20000 20000 25000 20000 17500 20000 20000 

 
Table 7: Natural frequencies (Hz) of the optimal designs for the 1410-bar dome 

Frequency 

number 

CPA 

[22] 

DPSO 

[46] 

ECBO-

Cascade 

[48] 

MDVC-

UPVS 

[49] 

PFJA 

[50] 

CRPSO 

[51] 

MJA 

[52] 

This study 

JS QJS 

1 7.000 7.001 7.0020 7.000 7.0009 7.0008 7.0003 7.0002 7.0000 

2 7.000 7.001 7.0030 7.001 7.0009 - 7.0003 7.0002 7.0000 

3 9.000 9.003 9.0010 9.000 9.0001 9.0068 9.0000 9.0000 9.0002 

4 9.002 9.005 9.0010 9.000 9.0002 - 9.0002 9.0066 9.0002 

5 9.002 9.005 9.0030 9.000 9.0002 - 9.0002 9.0066 9.0006 

 

 
Figure 13. Average weight convergence histories for the 1410-bar double-layer dome 

 

                                                   
3. QJS found a feasible optimum design corresponding to a structural weight of 10319.228 kg after 12520 

analyses. 
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Table 8: Comparison of the computational efficiency of the classical and efficient 

eigensolution methods 

Problem 
Classical eigensolution method Efficient eigensolution method 

Eigenvalue problem CPU time (s) Eigenvalue problem CPU time (s) 

600-bar dome-like truss 1 matrix of 576 × 576 0.0363 24 matrices of 24 × 24 0.0054 

1410-bar dome-like truss 1 matrix of 1080 × 1080 0.1797 30 matrices of 36 × 36 0.0140 

 

 

7. CONCLUSION 
 

In this paper, a quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), is 

proposed to solve structural optimization problems. Three main improvements are 

introduced in the proposed QJS: a quantum-based update rule to encourage the 

diversification in the search space, a new boundary control mechanism to avoid getting 

trapped in local optima, and modifications of the time control mechanism to strike a better 

balance between global and local searches. The purpose of the proposed QJS is to eliminate 

the drawback of the classical JS and to improve the balance between the diversification and 

the intensification tasks. The proposed QJS is applied to optimal design of cyclic symmetric 

dome structures with multiple frequency constraints. The structural analyses required in the 

optimization process are conducted by an efficient eigensolution method. The present 

eigensolution method takes advantage of the properties of the mass and stiffness matrices. It 

decomposes the initial free-vibration eigenproblem into some smaller sub-eigenproblems, 

which results not only in high accurate free vibration analysis results but also a substantial 

decrease in computational time as compared to the existing classical methods.  

To illustrate the efficiency and accuracy of the present eigensolution method as well as 

the performance of the JS and the QJS, both of the algorithms are applied to solve the sizing 

optimization problem of two large-scale cyclic symmetric dome structures with multiple 

frequency constraints. To the best of our knowledge, this is the first time that JS is applied to 

solve frequency-constrained optimization problems. Optimization results confirm that the 

best weight and average weight found by the QJS are better than those reported in the 

literature. Furthermore, thanks to effective exploration of the search space (within the first 

stages of the search process) and the good trade-off between the global exploration and the 

local exploitation, the QJS outperforms the classical JS in both terms of effectiveness and 

robustness. In all design examples, the best weight, average weight, worst weight, and 

standard deviation on average weight obtained by the proposed QJS are much better than 

those of the JS. This shows that the proposed QJS can offer a robust and competitive 

optimization algorithm for the optimal design of truss structures with multiple frequency 

constraints. Moreover, the results show that the present eigensolution leads to a significant 

decrease in computational time.  
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